Optimization Problems
Just a boi trying to solve some optimization problems.
First let’s define our parameters:
- matrices $A \in \mathbb{R}^{m \times n}$; $B \in \mathbb{R}^{m \times n}$; $C \in \mathbb{R}^{p \times n}$; $W \in \mathbb{R}^{m \times m} = \text{diag}{w_1, …, w_m }$ where $w_i > 0$
- vectors $b \in \mathbb{R}^n$; $d \in \mathbb{R}^p$
- scalars $\lambda \in \mathbb{R}+$
- By SVD, $A = U \Sigma V^T$ where $U \in \mathbb{R}^{m \times m}$ is orthonormal; $V \in \mathbb{R}^{n \times n}$ is orthonormal; $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix
| Problem | $x^*$ | $f(x^*)$ | Equations | Existence | Uniqueness |
| | | | | | |
| $\text{argmin} ||Ax - b||_2^2 : x \in R^n$ | $A^\dag b + z : z \in \mathcal{N}(AT)$ | $| | A A^\dag b + z - b||_2^2$ | | | |